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Abstract

Reinforcement learning provides algorithms for solving Markov Decision

Processes (MDPs), which do not require prior knowledge of the payoff and or

transition functions. Rather agents ‘learn’ optimal polices by observing the

outcomes (e.g., the payoffs and state transitions) of their actions.

In this paper, we introduce methods based around fitted Q iteration (Ernst

et al. 2005): a batch version of Q-learning (Watkins 1992). Fitted Q iteration

is proven to converge (in the single agent case) for certain types of function

approximators - here we focus on the popular approximation method tile

coding.

We consider how reinforcement learning can be applied to complex multi-

agent problems: stochastic games, where each agent faces a MDP with tran-

sition and payoff functions that are dependent on the actions of the other

players. We demonstrate these methods in the context of single and multi-

agent water storage problems.
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1 Introduction

Reinforcement learning provides a wide range of algorithms for solving Markov
Decision Processes (MDPs), which do not require ‘models’ of the ‘environment’
(the payoff and transition functions). Rather agents ‘learn’ optimal polices by
observing the outcomes of their actions: optimisation by simulation. Similar to
dynamic programming, reinforcement learning methods work by exploiting the
Bellman principle.

While used extensively in artificial intelligence and operations research, reinforce-
ment learning has received limited attention in economics. One reason, is that for
all their simplicity and intuitive appeal, many practical challenges are faced in
adapting these methods to economic problems.

We focus on the method of fitted Q iteration (Ernst et al. 2005); a batch version
of standard Q-learning (Watkins and Dayan 1992). In fitted Q iteration, a large
number of action, payoff and state transition samples are simulated, to which an
action-value or Q function is then fit. Similar to fitted value iteration, the method
is proven to converge subject to assumptions on function approximation.

Our goal is to develop solution methods for complex multi-agent problems, specif-
ically stochastic games, where each agent faces a MDP with state transition and
payoff functions dependent on the behaviour of other agents. Here we develop
an approach in the spirit of ‘multi-agent learning’ (Fudenberg and Levine 2007),
which combines reinforcement learning with learning concepts from game theory.

Our approach provides a middle ground between the dynamic programming
methods used in heterogeneous agent macro models and the simulation and
search methods commonly used in agent based computational economics — both
in terms of the size and complexity of the models it can be applied to and the
degree of rationality or ‘intelligence’ assumed for the agents.

We begin by defining our problem space: the single agent MDP and the stochastic
game. We then provide an introduction to reinforcement learning for single agent
problems before detailing the function approximation techniques we employ,
particularly tile coding. We then demonstrate the single agent method with an
application to a water storage problem.

We then move on to multiple agent problems. Here we summarise the literature on
solution concepts for stochastic games including the Markov Perfect Equilibrium
and Oblivious Equilibrium, before discussing the overlapping computer science
and economic literature on multi-agent learning. We then introduce our multiple
agent version of fitted Q iteration, and detail its application to a water storage
problems.
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2 The problems

2.1 Markov decision process

A MDP represents the problem of an agent selecting some action in an environment
in order to maximise a reward. A MDP operates in discrete time: each period
given current state st the agent takes an action at, the environment then produces
a reward rt and a state transition st+1.

Formally, a Markov decision process is a tuple (S, A, T, R, β). S ⊂ RDS is the state
space, where DS ∈ {1, 2, ...} is the dimensionality of the state space. A ⊂ RDA is
the action space. T : S× A× S → [0, 1] is the transition function, a probability
density function such that

∫

S′
T(s, a, s′) ds′ = Prob(st+1 ∈ S′|st = s, at = a)

R : S× A→ R is the reward function. Finally β ∈ (0, 1) is the discount rate. The
users problem is to choose at to maximise the expected discounted reward

max
{at}∞

t=0

E

{
t=∞

∑
t=0

βtR(at, st)

}

given T, R, s0 and at ∈ Γ(st) ⊂ A, where Γ is the feasibility correspondence.

A (Markovian) policy function for the MDP is a mapping from states to actions
f : S→ A. The discounted expected reward of following policy f is defined

V f (s) = E

{
∞

∑
t=0

βtR( f (st), st)|s0 = s

}

where st+1 ∼ T(st, f (st)).

The value function associated with the optimal policy is defined as

V∗(s) = sup{V f (s)}

Typically the value function also satisfies the Bellman principle

V∗(s) = max
a

{
R(s, a) + β

∫

S
T(s, a, s′)V∗(s′) ds′

}
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2.2 Stochastic game

A stochastic game is essentially a multiple agent MDP.

There is a finite set of players I = {0, 1, ..., N}. The agents take actions ai
t ∈

Ai ⊂ RDA . We define the action profile as at = (ai
t)i∈I and the action space

A = A0 × A1 × ...× AN. The state of the game st, can include both agent specific
states si

t ∈ Si ⊂ RDS and a global state sg
t ∈ Sg ⊂ RDG , the state space is S =

S0 × S1 × ...× SN × Sg.

Each agent has reward function Ri : S× A→ R and as before we have a transition
function T : S × A × S → [0, 1] and discount rate β. The agents problem is to
choose ai

t to maximise their expected discounted reward

max
{ai

t}∞
t=0

E

{
t=∞

∑
t=0

βtRi(at, st)

}

given s0, Ri, T, a−i
t and ai

t ∈ Γi(st) ⊂ Ai.

We define player policy functions fi : S → Ai and the policy profile function
f : S → A. For any policy profile each player has a value function V f

i : S → R

defined by

V f
i (s) = E

{
∞

∑
t=0

βtR(( f (st), st)|s0 = s

}

Stochastic games were first introduced by Shapley (1953), who showed that a
two player zero-sum stochastic game could be solved by value iteration. Some
of the main economic applications of stochastic games have been in industrial
organisation, particularly models of oligopoly with investment and firm entry and
exit (Ericson and Pakes 1995).

Stochastic games have also been applied to common pool resource extraction
problems (see for example Levhari and Mirman 1980). Recent applications have
included fisheries (Kennedy 1987), groundwater (Negri 1989, Rubio and Casino
2001, Burt and Provencher 1993) and even surface water reservoirs (Ganji et al.
2007). Stochastic games have also been applied to commodity storage problems
(Murphy et al. 1987, Rui and Miranda 1996).

3 Single agent reinforcement learning

Reinforcement Learning is a sub-field of machine learning concerned with solving
MDPs. For a detailed introduction see Sutton and Barto (1998), Bertsekas and
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Tsitsiklis (1995) or Weiring and Otterlo (2012).

Central to reinforcement learning are so called ‘model free’ approaches: where
the transition and payoff functions are assumed unknown. Here the agent must
learn only by observing the outcomes — the reward and state transition — of
its interactions with the environment (figure 1). Learning a good policy requires
some degree of ‘exploration’: that is, testing a range of actions in each state.

Figure 1: Reinforcement learning

Agent

Environment

State, st

st+1

Action, atReward, rt

While historically related, the reinforcement learning methods sometimes applied
in repeated games (see for example Erev and Roth 1998) are distinct from the
methods we refer to here, as they involve estimating value functions via the
Bellman principle.

Reinforcement learning has some computational advantages over dynamic pro-
gramming, particularly in larger problems. As a simulation method, attention is
limited to realised state combinations (see Judd et al. 2010), rather than a regular
(tensor product) grid over the state space. Since, state variables are often correlated
this can greatly reduce the complexity of the problem (Judd et al. 2010).

For example, figure 2 shows 10,000 simulated state points (storage St by inflow It)
for a water storage problem (see section 5). Note that all inflows above the storage
capacity of 1000 GL are associated with storage of 1000.

Reinforcement learning methods can also be easy to parallelize and generally
provide greater flexibility to trade-off computation time and accuracy.

3.1 Q-learning

Q-learning (Watkins and Dayan 1992) is the canonical ‘model free’ reinforcement
learning method. Q-learning works on the ‘state-action’ value function Q : S×
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Figure 2: Planner’s storage problem, sample state points
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A → R, defined as the present value payoff from taking action a in state s and
following an optimal policy thereafter

Q∗(a, s) = R(s, a) + β
∫

S
T(s, a, s′)max

a
Q∗(a, s′) ds′

Once in possession of Q∗, we can compute an optimal (aka greedy) policy without
the payoff and transition functions

f ∗(s) = arg max
a

Q∗(a, s)

max
a

Q(a, s) = V∗(s)

In standard Q-learning we incrementally update the Q function by observing
state-action transitions {st, at, rt, st+1}. For a discrete state and action space, the
algorithm operates as follows:

Algorithm 1: Q-learning with discrete state and actions
1 Initialise Q, s0
2 for t = 0 to T do
3 select at ∈ A ; // from some exploration policy

4 simulate (at, st) and observe rt and st+1
5 set Q(at, st) = (1− αt)Q(at, st) + αn{rt + β maxa Q(a, st+1)}
6 end

The actions at must be selected according to an ‘exploration’ (partially randomised)
policy. A simple option is an ε-greedy policy: a random policy with probability
ε and an optimal policy otherwise. The choice of exploration policy involves
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an exploration-exploitation trade-off: a highly random policy will provide good
coverage of the state-action space, but risks spending too much time at irrelevant
points.

αt ∈ (0, 1) is known as the learning rate. α may be constant, but more commonly
follows a decreasing schedule. Watkins and Dayan (1992) shows (for discrete state
and actions) that Q-learning converges as t → ∞, subject to conditions over the
exploration policy and learning rate αt.

Q-learning can be extended to the continuous state and action case through func-
tion approximation. However, this typically voids convergence guarantees. Fur-
ther, Q-learning is known to be unreliable (prone to spectacular divergence) in the
continuous case (Weiring and Otterlo 2012).

3.2 Fitted Q iteration

Fitted Q iteration (Riedmiller 2005, Ernst et al. 2005) is a batch algorithm. First, a
simulation is run for T periods (again using an exploration policy). Then a series
of Q function updates is applied to the accumulated set of state-action samples
(see Algorithm 13).

The approach has two main advantages: data efficiency since all samples are stored
and reused and stability since Q functions can be fit to large samples. Further, it
has some attractive properties in multiple agent problems (Weiring and Otterlo
2012).

Algorithm 2: Fitted Q Iteration (continuous state and action)
1 initialise s0
2 for t = 0 to T do // Simulate the system for T periods

3 select at ∈ A ; // from some exploration policy

4 simulate (at, st)
5 store the sample (st, at, rt, st+1)
6 end
7 initialise Q(at, st)
8 repeat // Iterate until convergence

9 for t = 0 to T do
10 set Q̂t = rt + β. maxa .Q(a, st+1)
11 end
12 estimate Q by regressing Q̂t against (at, st)
13 until a stopping rule is satisfied;

The separation of simulation and the fitting stages provides also additional flex-
ibility. Firstly, it allows any type of parametric or non-parametric regression
(supervised learning) model to be applied. Secondly, it facilitates parallel comput-
ing, since the simulation stage is so called embarrassingly parallel.
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The success of fitted Q iteration depends crucially on the type of function approxi-
mation schemes employed. A variety of schemes have been used in the literature,
including random forests (Ernst et al. 2005), neural networks (Riedmiller 2005)
and tile coding (Timmer and Riedmiller 2007). Similar to continuous dynamic
programming, the algorithm is guaranteed to converge for certain classes (i.e.,
non-expansive) function approximators (Ernst et al. 2005) (see Section ??).

3.3 Fitted Q-V iteration

In noisy economic problems large samples T may be required. In this case opti-
mising Q for each state point st may be an unnecessary burden (especially in the
multi-agent case). One option is to optimise over a representative subset of state
points, then estimate a continuous state value function V (Algorithm 18).

Algorithm 3: Fitted Q-V iteration
1 initialise s0
2 for t = 0 to T do // Simulate the system for T periods

3 select at ∈ A ; // from some exploration policy

4 simulate (at, st)
5 store the sample (st, at, rt, st+1)
6 end
7 initialise Q(at, st)
8 repeat // Iterate until convergence

9 select a subset {sk}K
k=1 ⊂ {st}t=T

t=0
10 for k = 0 to K do
11 set V̂k = maxak .Q(ak, sk)
12 end
13 estimate V(st) by regressing V̂k on sk
14 for t = 0 to T do
15 set Q̂t = rt + β.V(st+1)
16 end
17 estimate Q by regressing Q̂t against (at, st)
18 until a stopping rule is satisfied;

3.4 Sample grids

A natural choice for our subset of state points {sk}K
k=1 is a sample of approximately

equidistant points (i.e., a sample grid). Our starting point here is a simple distance
based method (Algorithm 4), which provides a subset of points at least r distance
apart. 1. This method is very similar to the approach of Judd et al. (2010) 2.

1Note typically we scale all input data to the range [0, 1]
2However, our method also counts the sample points within the radius r of each point: in order

to identify outliers. Judd et al. (2010) remove outliers by separately estimating a density function.
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Figure 3 provides a demonstration in two dimensions. This method is sufficient
for moderate sample sizes but can become inefficient for large dense data sets.
One option is to add an early stopping condition, another is to employ some form
of function approximation (i.e., tilecoding).

Algorithm 4: Selecting an approximately equidistant grid
1 set J = 0, c0 = X0, n0 = 0
2 for t = 0 to T do
3 set rmin = ∞
4 for j = 0 to J do // Find the nearest center cj∗

5 set r = ||Xt − cj||
6 if r < rmin then
7 set rmin = r
8 set j∗ = j
9 end

10 end
11 if rmin > r then // Add Xt as the next center cj
12 set j = j + 1
13 set cj = Xt

14 set nj = 0
15 else // Increment counter for center cj∗ by 1

16 set nj∗ = nj∗ + 1
17 end
18 end

Figure 3: An approximately equidistant grid in two dimensions
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4 Function approximation

The success of batch reinforcement learning depends crucially on function approx-
imation. In machine learning this is known as ’supervised learning’: to ‘learn’
(estimate) a model for a ‘target’ (dependent) variable Y conditional a vector of
‘input’ (explanatory) variables X, given only a set of ‘training data’ {Yt, Xt}T

t=0. A
demonstration of the problem is provided in figure 4.

The goal with function approximation is prediction: we want a model that can
accurately predict Y given realisations of X outside our training sample. In at-
tempting to minimise prediction error we face a bias-variance trade-off. A highly
flexible model is at risk of ‘overfitting’ noisy data (figure 4a) while an inflexible
model may lead to systematically biased predictions (figures 4b, 4e).

For our purposes, computation time is also important: both fitting (estimation)
time and prediction (function call) time. In practice, subtle tradeoffs are faced
between predictive power, fitting time and prediction time. Unfortunately, there is
no general purpose method that achieves the optimal balance of all factors in all
applications: there is no free lunch (Wolpert 1996).

Our Fitted Q−V iteration approach, poses two distinct approximation problems:
A big problem (i.e., the Q function) and a small problem (i.e., the policy and value
functions f , V). The features of these problems are summarised in table 1.

Table 1: Two approximation problems

Big Problem Small problem

Sample size Large (0.5-1× 106) Small (500-2000)
Input dimensions Small (5) Small (4)
Data structure None Gridded
Target noise High Low
Time constraint Fitting Prediction
Extrapolation important No Yes
Example Q(at, st) f (st)

For various reasons, standard methods employed in economics — such as orthog-
onal polynomials — are not ideal for these problems. Below we introduce the
method of tile coding, which we use to approximate Q, V and f in all our water
storage problems.
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For various reasons, standard methods employed in economics — such as orthogo-
nal polynomials — are not ideal for these problems. Below we introduce a method
known as tile coding, which is particularly well suited to noisy problems in low
(i.e., less than 10) dimensions.

4.1 Tile coding

Tile coding (Albus 1975, Sutton and Barto 1998) is a function approximation
scheme popular in reinforcement learning. With tile coding, the input space is
partitioned into tiles. A whole partition is referred to as a tilling or a layer. A tile
coding scheme then involves multiple overlapping layers, each offset from each
other according to some displacement vector.

Figure 5: Tile coding

input space

tiling layer 1

tiling layer 2

input point Xt

activated tile, layer 1

activated tile, layer 2

Tile coding is best understood visually. In the simplest approach the tilings are
just regular grids (i.e. rectangular tiles) and each grid is offset uniformly (i.e.
diagonally) as in figure 5.

More formally, a tile coding scheme involves i = 1 to NL layers. Each layer
contains j = 1 to NT binary basis functions

φij(X) =





1 if X ∈ Xij

0 if otherwise

For each point Xt one tile j in each layer i is activated and our predicted value is
the mean of the weights wij attached to the active tiles
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Y =
1

NL

NL

∑
i=1

NT

∑
j=1

wijφij(X)

Tile coding is a constant piecewise approximation scheme: the ‘resolution’ of
the approximation depends on the number of layers and the number of tiles
per layer. For example, figure 4a shows a tile coding scheme with NL = 1 and
NT = 6. Just increasing the number of tiles gives a finer resolution but provides less
generalisation leading to over fitting (see figure 4b). Figure 4c, shows a model with
NL = 40 and NT = 4 which provides both high resolution and good generalisation.

Tile coding has some computational advantages schemes with basis functions
of global support. Tile weights are stored in arrays and accessed directly (com-
puting array indexes just involves integer conversion of X). Each function call
then involves only the NL active weights. As such, prediction time is low and
grows linearly in the number of layers rather than exponential in the number of
dimensions.

Function predict(X)

1 set Ŷ = 0
2 for i = 0 to NL do
3 j = index(X, i) ; // returns index of active tile

4 Ŷ = Ŷ + 1
NL

wij

5 end
6 return Ŷ

This speed gain comes at the cost of higher memory usage. However, since many
reinforcement learning applications are CPU bound, this is an efficient use of
resources. Memory limits are not an issue in any of our problems. In higher
dimensions, weight arrays can be compressed through ’hashing’.

4.1.1 Fitting

The standard method of training the weights is SGD. An alternative, is to define
each weight as a simple average, as in Algorithm 5.

Timmer and Riedmiller (2007) considers the use of tile coding in fitted-Q-iteration.
When tile weights are simple averages, fitted-Q-iteration is guaranteed to converge
on a unique fixed point (Timmer and Riedmiller 2007). A convergence result is
possible, because this form of tile coding is a non-expansive approximator: that is
a smoother or averager (see Stachurski 2008, Gordon 1995)3.

3This form of tile coding is in fact closely related to other more common averaging methods
such as k-nearest neighbours and random forests.
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Algorithm 5: Fitting tile weights by averaging
1 for t = 0 to T do
2 for j = 0 to NL do
3 i = index(Xt, j) ; // returns index i of active tile

4 set nij = nij + 1 ; // count tile sample size

5 set wij = wij + Yij ; // calculate sum

6 end
7 end
8 for j = 0 to Nl do
9 for i = 0 to NT do

10 set wij = wij/nij ; // calculate mean

11 end
12 end

While fitting by averaging provides a convergence guarantee it is unlikely to
provide ideal performance: it will suffer badly from bias if the tiles are too wide
(see figure 4d) and variance if the tiles are too small. An alternative approach
is ‘Averaged SGD’ (ASGD) (Bottou 2010), where the weights are defined as the
average of a single SGD pass over the data (Algorithm 6). .

Algorithm 6: Averaged Stochastic Gradient Descent (ASGD) - Tile coding
1 Initialise wij by averaging (Algorithm 5)
2 set w̄ij = 0 for all i, j
3 for t = 0 to T do // A single SGD pass

4 set δt = predict (X) −Yt
5 for j = 0 to J do
6 i = index(Xt, j)
7 set wij = wij − αtδt

8 set w̄ij = w̄ij + wij ; // sum the weight updates

9 end
10 end
11 for j = 0 to NL do
12 for i = 0 to NL do
13 set wij = w̄ij/nij ; // calculate mean

14 end
15 end

Bottou (2010) demonstrates the superiority of ASGD over SGD from problems
with large samples. In Section 5 we show that fitting the Q function by ASGD
achieves a performance gain over averaging with no loss of stability.
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4.1.2 Big problems

For big problems (i.e., the Q function) we use tile coding with regularly spaced
grids. We use the ‘optimal’ displacement vectors of (Brown and Harris 1994). Tile
weights are fit by ASGD.

Tile coding can suffer from noise in regions where training data are sparse, so for
input variables with tails, we limit the tiling to a percentile range of the training
data (e.g., the 1st to 99th). We then pass on the job of extrapolating into the
unrepresented parts of the input space to our policy and value functions. 4.

4.1.3 Small problems

For small problems we again use regular grids and optimal displacement vectors.
The tile weights are fit either by averaging — for value functions — or standard
SGD using averaging for starting values.

For extrapolation, we combine our tile coding scheme with a sparse linear spline
model. The combined scheme replaces the tile code weight wij with the linear
spline predicted value if nij = 0.

5 The planner’s water storage problem

Here we apply fitted Q-V iteration to the planners storage problem and compare
it to the benchmark of dynamic programming.

5.1 The problem

The problem is that of a planner managing a reservoir on a river. The reservoir
receives stochastic water inflows makes storage releases to satisfy multiple water
users (i.e., irrigation farmers) located at a single demand node.

The planners problems is to maximise the benefits from water use, subject to the
hydrological (water supply) constraints:

max
{Wt}t=∞

t=0

E

{
∞

∑
t=0

βtΠ(Qt, It)

}

4There are a number of other more complex options here. One is the idea of ‘adaptive tile
coding’ where the tile sizes are endogenous and may for example be larger in regions with less
data (see Whiteson et al. 2007). Another is to apply a non-linear scaling to the input data to make it
more uniformly distributed.
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Figure 6: A simple river system

Inflow, It+1

Release point, F1t

Storage, St

Demand node
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Extraction, Et

Extraction point, F2t

End of system, F3t

2

3

Return flow, Rt

Subject to:

St+1 = min{St −Wt − δ0αS2/3
t + It+1, K}

0 ≤Wt ≤ St

Qt ≤ max{(1− δ1b)Wt − δ1a, 0}

where Π is a concave payoff function (i.e., irrigation profit function), Qt is water
use, It+1 is the stochastic storage inflow (following an AR-1 process), St the storage
volume, Wt the storage withdrawals, K is the fixed storage capacity, δ0, δ1a, δ1b, α

are all loss (i.e., evaporation) parameters and β is the discount rate. Further detail
on parameter assumptions is contained in my thesis.

An important feature of the problem are storage ‘spills’: where the storage reaches
capacity and further inflows are ‘lost’ (i.e. flow uncontrolled downstream) we
define spills Zt as

Zt = max{It+1 − (K− St −Wt − δ0αS2/3
t ), 0}
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5.2 The solution

For fitted Q-V iteration we adopt a two stage ‘growing batch’ approach. We simu-
late an initial batch of samples assuming uniform (i.e., uninformed) exploration:

Wt = εt.St

εt ∼ U[0, 1]

After running fitted Q-V on the first first batch we add a second batch of samples,
this time with Gaussian exploration:

Wt = min{max{ f̂ (St, Ĩt) + εtSt, 0}, St}

εt ∼ N(0, δ)

0 < δ < 1

where f̂ is the policy function obtained from the first batch.

Algorithm 4 is used to build a grid of state points with r = 0.02. Tilecoding is
used to approximate Q, V and f . We test fitting the Q function both by averaging
(TC-A) with ASGD (TC-ASGD).

For dynamic programming we employ fitted policy iteration and use tile coding
to approximate V over a 35× 35 grid of the state space. We begin both methods
with the initial guess V(X) = 0.

Both methods are coded predominantly in cython. Both make user of paralleliza-
tion and run on a standard 4-core i7 desktop. Mean welfare, storage, and solution
time are shown in tables 2, 3, 4 (each the average of 10 runs).

Fitted Q-V iteration obtains a policy comparable with SDP in less time. The fact
that fitted Q-V iteration compares well for trivial single agent problems, suggests
significant gains (in computation time) may be achievable in larger problems.

Table 2: Mean social welfare

5000 10000 20000 50000 80000

Myopic 181.4 181.4 181.4 181.4 181.4
SDP 186.6 186.6 186.6 186.6 186.6
TC-A 185.4 185.5 185.8 185.9 186.0
TC-ASGD 185.7 185.9 185.9 186.2 186.3

Reinforcement learning achieves welfare levels up to 99.8 per cent of the SDP
solution and results in similar mean storage levels.
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Figure 7: Performance of fitted Q-V iteration, planner’s storage problem
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Table 3: Mean storage

5000 10000 20000 50000 80000

Myopic 577.4 577.4 577.4 577.4 577.4
SDP 697.8 697.8 697.8 697.8 697.8
TC-A 691.5 686.2 686.9 685.8 690.5
TC-ASGD 696.6 704.7 700.8 710.8 699.6

Table 4: Computation time

5000 10000 20000 50000 80000

SDP 6.6 7.2 7.5 7.4 7.4
TC-A 0.4 0.4 0.5 0.6 0.8
TC-ASGD 0.4 0.6 0.9 1.3 1.9
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For a given sample size ASGD outperforms averaging. Note that in this trivial
example, TC-A still performs well on a computation time basis, because fitting time
is longer with ASGD. However in more complex problems — where simulation is
more time intensive — the gains from ASGD become more important.

6 Equilibrium in stochastic games

6.1 Markov Perfect Equilibrium

A natural equilibrium concept for stochastic games is a ‘Markov perfect equilib-
rium’ (MPE) (Maskin and Tirole 1988). An MPE is defined by a set of markovian
policies functions { f0, f1, ..., fN} which simultaneously solve each agents’ problem,
forming a sub-game perfect Nash equilibrium.

MPE existence results have been established for specific classes of stochastic games
as early as Shapley (1953). These early results typically assume finite state space or
time horizons and mixed strategies. A general (pure strategy, infinite horizon and
state space) existence result has remained elusive despite much recent attention
(Duggan 2012, Escobar 2011, Balbus et al. 2011, Horst 2005, Amir 2005).

Broadly, MPE existence results involve two steps: one, show that for any feasible
set of opponent policies f−i the agents’ problems have unique solutions V∗i (s);
two, show that the static ‘stage game’, with payoff functions πi(a, s, Vi(s))

πi(a, s, Vi(s)) = R(s, a) + β
∫

S
T(s, a, s′)Vi(s′) ds′

has a Nash equilibrium for any s ∈ S and any feasible set of Vi.

Recent existence results all rely on particular regularizing assumptions. For exam-
ple Escobar (2011) adopts an assumption of concave reduced payoffs: concavity
of πi with respect to a. Horst (2005) relies on a weak interaction condition: that
players utility is affected more their own actions than by all other players actions.
Amir (2005) applies the lattice theory concepts of supermodularity and increasing
differences. Recently Duggan (2012) proves existence of MPE where the transition
functions are subject to a particular form of noise.

In general, uniqueness of equilibra in stochastic games is not guaranteed. As
demonstrated by Doraszelski and Satterthwaite (2010) multiple equilibira are
commonly observed in the Ericson and Pakes (1995) style models. The uniqueness
of equilibria is usually considered numerically, by testing invariance to starting
values. Although standard algorithms are not guaranteed to locate all possible
equilibria (Borkovsky et al. 2008).
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6.2 Oblivious Equilibrium

A general problem with stochastic games is that the dimensionality of the state
space, Dn

S ×DG, can be too large, particularly when n is large and DS > 0. Further
the assumption that the agents have information on all opponent state variables
becomes unrealistic.

Oblivious Equilibrium (OE) is an alternative to MPE in the case were n is large
(Weintraub et al. 2008). Here opponent state variables are replaced with relevant
summary statistics, such that the state space for the agents’ problems is condensed
to Si × SG.

Weintraub et al. (2008) shows that under certain conditions (a large number of
similarly sized firms) OE approximates MPE for oligopoly type models. This result
is generalised to a broader class of dynamic stochastic games by Abhishek et al.
(2007). In context of oligopoly models opponent state variables are replaced with
their long-run average means. Weintraub et al. (2010) extend OE to models with
aggregate shocks, here opponent states are replaced with their mean conditional
on the aggregate shock.

While uniqueness of OE is not guaranteed Weintraub et al. (2008) find no examples
of multiple equilibria in applied problems, and argue that in general OE is likely
to involve fewer equilibria than MPE.

7 Learning in games

7.1 Learning in repeated games

The theory of learning in games describes how less than fully rational agents adapt
in response to observed past play. There is much economic literature on learning
in repeated games: testing how closely learning models reflect human behaviour
in experiments (for example Erev and Roth 1998) and establishing if and when
they converge on equilibrium in models (see Fudenberg and Levine 1998).

Learning models are particularly relevant for games with large numbers of agents
and ’aggregate statistics’ where “players are only trying to learn their optimal
strategy, and not to influence the future course of the overall system (Fudenberg
and Levine 2007; pp. 3). In the most general learning models, the population of
agents can have ‘heterogeneous beliefs’, so that identical agents may play differing
policies.

The oldest learning model is fictitious play: where each agent plays a best response
to the empirical distribution of past play. A related model is the partial best response
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dynamic (Fudenberg and Levine 1998): where a sample of users play a best
response to the previous periods play. Fudenberg and Levine (1998) show that for
repeated games, these two models have the identical asymptotic properties.

Another model popular in economics is ‘reinforcement learning’ — here we refer
to the ‘foresight-free’ methods, not the machine learning methods which are the
focus of this paper. Here agents maintain a probability distribution over actions,
with actions that result in higher payoffs gradually receiving higher probabilities.
Erev and Roth (1998) show that such simple rules closely match the behaviour of
humans in experiments.

7.2 Multiple agent learning

Unfortunately, the economic literature on learning in stochastic games is surpris-
ingly scarce (see Fudenberg and Levine 1998). Here we turn to multiple agent
learning: a relatively young but rapidly expanding field at the intersection of
game theory and machine learning / artificial intelligence (Shoham et al. 2007,
Fudenberg and Levine 2007, Busoniu et al. 2008). Here concepts of equilibrium
and learning in repeated games meet reinforcement learning algorithms for single
agent MDPs.

While reinforcement learning methods are designed for artificial ‘software agents’,
they have a foundation in human and animal behavioural psychology and neu-
roscience (Weiring and Otterlo 2012). Putting aside this scientific ’inspiration’,
reinforcement learning provides a set of mature algorithms for representing agents
who optimise subject to limited information and computational resources.

An obvious starting point for stochastic games, is to allow each agent to follow
a single agent algorithm. In this case the behaviour of the other agents becomes
part of the environment that needs to be learned5.

This type of multi-agent Q-learning has been applied widely in computer science
domains, with some success (Busoniu et al. 2008). In the multi-agent context their
are no convergence guarantees (as the environment is no longer stationary) and
the convergence properties have been subject to limited study (Busoniu et al. 2008).

To date reinforcement learning has received little attention from economists:

From the perspective of economists, Q-learning and other procedures
that use generalizations of reinforcement learning to estimate value
functions in environments with a state variable have not been well-
studied....It may be that considering Q-learning in the multiple-agent

5In stochastic games incremental Q-learning or ‘actor-critic’ methods with ‘soft-max’ exploration
would be a natural analog to the Erev and Roth (1998) type methods used in repeated games
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case where players simultaneously try to calculate value function will
lead to important new insights (Fudenberg and Levine 2007; pp. 6)

Surprisingly, the predictions of Q-learning models have yet to be com-
pared with data from controlled laboratory experiments with human
subjects - a good topic for future research (Tesfatsion and Judd 2006;
pp. 979).

Economic applications of Q-learning are rare and the few examples (Tesauro
and Kephart 2002, Kutschinski et al. 2003) apply Q-learning to repeated games
(oligopoly price / quantity competition) rather than stochastic games.

8 Multiple agent fitted Q-V iteration

8.1 The algorithm

Here we present a multi-agent version of fitted Q-V iteration (Algorithm 24). In
essence, the method combines our single agent algorithm with two smoothing
dynamics (i.e., learning models). Similar to repeated games, a non-smoothed
application of batch reinforcement learning (i.e., computing optimal policies for
all agents then repeating) will be unstable and prone to cycles.

One option is a partial best response dynamic. Within each simulation stage
the environment is stationary (the users’ policy functions are fixed) so we can
compute optimal (best response) policies using fitted Q-V iteration, assign these
to a random sample of the population and repeat. The other option is some form
of fictitious play. Here all users would take the optimal polices each stage, but new
sample batches would be combined with the existing batch of samples (similar to
the growing batch approach in section 5)

Our general multi-agent algorithm (algorithm 24) combines both of these types
of smoothing. The method permits much flexibility. With high K and λ = 1 we
have a partial best response dynamic, with low λ, low K it approaches an ‘on-line’
reinforcement learning method. Our preferred approach (detailed in the next
section) is a comprise between these extremes.

8.2 Interpreting the method

This method is to be interpreted firstly as a learning algorithm. Within the com-
puter science literature, this represents ‘rational’ agent learning (Bowling and
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Algorithm 7: Multiple agent fitted Q-V iteration

1 simulate an initial batch of samples {st, at, rt, st+1}T
t=0

2 store the samples in arrays s, s+1, a and r
3 initialise fi, Vi, s0, Qi
4 for J iterations do
5 for t = 0 to λT do // Simulate for λT periods

6 select at using policies fi with exploration
7 simulate (at, st)
8 store the new samples {st, at, rt, st+1}
9 end

10 replace λT samples of s, s+1, a and r with new samples
11 for K iterations do
12 select a subset of state points s̃ ⊂ s
13 for i ∈ I do

14 set Q̂i = ri + β.Vi(s+1)

15 update Qi, by regressing Q̂i on (ai, s)

16 set V̂i = maxa Qi(a, s̃)
17 update Vi by regressing V̂i on s̃
18 end
19 end
20 for i ∈ Iu do // update policy functions for Iu ⊂ I
21 set âi = arg maxa Qi(a, s̃)
22 update fi by regressing âi on s̃
23 end
24 end
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Veloso 2001): learning that converges on best response policies given stationary op-
ponent policies. Within the economic literature, the approach might be described
as an ’optimisation-based’ learning method (Crawford 2013).

At the same time, the approach is only a small departure from algorithms used
to compute rational expectations equilibria. For example, the approach is similar
to methods used to solve stochastic games for MPE, including the value itera-
tion method of Shapley (1953) and the simulation based approach of Pakes and
McGuire (2001). It is also related to the Krusell and Smith (1998) style algorithms
used to solve macro heterogeneous agent models, where user problems are solved
by dynamic programming and user interactions are estimated through simulation.

While our approach is clearly related to the field of Agent Based Computational
Economics (ACE), there are some important differences. In practice, agent based
models tend to rely on genetic algorithms / replicator dynamics and almost never
make use of reinforcement learning methods (although they are considered in
Tesfatsion and Judd 2006).

The differences between ACE and multi-agent learning reflect their respective
origins. Agent based modeling comes from the physical sciences, with a focus
on the aggregate dynamics resulting from very large numbers of simple agents.
A typical example being animal herds. Multi agent learning comes from an
engineering / computer science background. Here the focus is on how a moderate
number of intelligent agents can develop good (optimal) policy rules. With typical
examples being the interaction of robots / vehicles in logistics or defence.

9 The decentralised storage problem

Below we detail the application of fitted Q-V iteration to a decentralised version
of the water storage problem.

9.1 The problem

The decentralised problem is defined in detail my thesis, below is a brief outline.

In the decentralised model their are a large number of water users i = 1 to n.
Each user holds a property right to the reservoir enabling them to make their own
storage / withdrawal decisions. These rights operate as ‘water accounts’. Each
period these accounts are credited with a share λi of inflow and debited for user
withdrawals wit. The evolution of user account balances sit follows the general
form
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sit+1 = min{max{sit − wit − lit + λi It+1 + xit+1, 0}, kit}

wit ≤ sit

n

∑
i=1

λi = 1,
n

∑
i=1

sit = St,
n

∑
i=1

lit = δ0αS2/3
t

where lit are user storage loss deductions, kit are user account limits and xit are
the ‘storage externalities’. Intuitively xit are account reconciliations, which ensure
the total account balance ∑n

i=1 sit matches the physical storage volume St.

Here just note that xit can be a rather complicated function of the storage balances
and withdrawals of all users st = (s1t, s2t, ..., snt) and wt = (w1t, w2t, ..., wnt) as
well as quantities St, Wt, Lt and It.

In addition to making withdrawal decisions users can also engage in a water spot
market, trading their water ‘allocations’: withdrawals adjusted for delivery losses.
The users problem is to choose withdrawals wit and water use qit to maximise
private welfare, which is the sum of profits from water use πi(qit, It, eit) and net
proceeds from water trading R(wit, qit, Pt, τ)

max
{wit}t=∞

t=0

E

{
∞

∑
t=0

βt (πi(qit, It, eit) + R(wit, qit, Pt, τ))

}

subject to the water accounting constraints, the behaviour of the other agents and
the physical constraints. Here eit is a user specific productivity shock, Pt is the
market price and τ the transaction cost.

The version referred to below involves 100 agents, divided into two groups of 50
the ‘low reliability’ users (with inelastic water demands) and the ’high reliability’
users (with elastic demands).

The purpose of the model is to test different property rights schemes. Here a
property rights system is defined by the specification of lit, kit and xit. For example,
we compare the case of storage property rights, kit = λiK, with an open access
outcome, kit = K, in which users are not accountable for the effect they have on
spills.

9.2 The solution

We begin the process by solving the planner’s problem by SDP, and using the
planners solution to derive guesses for the user policy functions. We then solve the
high and low reliability users problems (holding opponent policies fixed) by single

25



agent fitted Q-V iteration. This yields an initial batch of T samples and estimates
f̂i, v̂i of the policy and value functions. We then proceed to the full multi-agent
algorithm as outlined above.

We use J = 25 major iterations and K = 1 value iterations and λ = 0.10. After
each major iteration we update policies for a 20 per cent random sample of agents.
From this sample of agents we select a subsample to become ’explorers’. We adopt
Gaussian exploration:

wit = min{max{ f̂i(sit, St, eit, Ĩt) + N(0, δt.sit), 0}, sit}

0 < δt < 1

The number of explorers and range of exploration declines over the 25 iterations,
from 10 explorers (5 per user group) and δ = 0.25 to 4 explorers and δ = 0.085.

We pool the samples from the respective user groups (the low and high reliability
users). We begin with T of 100,000, which gives 500,000 samples for each of our
user groups. We optimise the Q function for both groups over a sample grid of
state points with radius 0.045. Tile coding is used to approximate the policy and
value functions and the Q function (fit by ASGD).

9.3 Some results

Below are some sample results just to demonstrate the performance of the method.
Again, there’s not enough space here to throughly explain these results.

Firstly, the method achieves a degree of convergence. While subject to some
noise, changes in value and policy functions tend to diminish, rather than cycle.
Importantly key model aggregate variables (prices, storage volumes, payoffs)
show a high degree of stability. Note that, cycles are found to emerge in these
problems if the degree of smoothing is insufficient.

Scenarios, that involve very few externalities (storage capacity rights CS) and
which are expected (from theoretical results) to achieve close to optimal outcomes,
closely match the planner’s SDP solution. Scenarios with large externalities (such
as open access - OA) result in expected changes in behaviour (above optimal
storage) and welfare losses.

If anything the multi-agent solution tends to be more robust (i.e., achieves the
same result when solved multiple times) than the single agent. While individual
policy functions tend to display some noise, this averages out across large numbers
of agents.
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Figure 8: Mean storage by iteration
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Figure 9: Mean social welfare by iteration
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10 Conclusions

Reinforcement learning provides a mature set of algorithms for solving MDPs.
While some practical problems are faced in adapting these methods to economic
problems, they are not insurmountable.

Economic problems tend to be noisy, relatively ‘smooth’ (the value and policy
functions tend to be smooth after averaging out the noise) and involve relatively
small state spaces. The batch method of fitted Q-V iteration is well suited to
this context. While large samples may be required, the method can be faster than
dynamic programming, when combined with appropriate function approximation.

Here we find the method of tile coding ideal. Tile coding can process large data sets
much faster than alternatives relying on global basis functions. Tile coding may
also be useful in other applications in economics including dynamic programming.
In any more than around 10 dimensions the memory requirements of tile coding
can become restrictive6.

Our multi-agent reinforcement learning method provides a middle ground be-
tween Krusell and Smith (1998) style methods and agent based methods — both in
terms of the size and complexity of the models it can be applied to and the degree
of rationality or ‘intelligence’ assumed for the agents.

Reinforcement learning allows us to consider larger more complex multi-agent
problems — including those with externalities – than can be attempted with
traditional techniques. While, we may need to relax our notion of equilibrium
(i.e., move away from rational expectations), we can hold tightly to the idea of
individually maximising agents.

Clearly, the simulation and search methods of agent based economics provide
maximum flexibility in terms of the size and complexity of models that can be
considered. However, agent based methods often rely on simple behavioural rules
(which may then replicate based on success). With reinforcement learning, we can
have more realistic ‘intelligent’ agent behaviour.

The field of multi-agent learning is still relatively young. There is much debate
within and between disciplines, on best notion of equilibrium and how much
emphasis to place on it. While techniques are continuously evolving, the method
of multi-agent fitted Q-V iteration presented here, provides a practical starting
point for economic problems.

6In large state spaces we can either turn to tree based approximation methods such as ’random
forests’, or consider some form of state ‘abstraction’ / feature selection method to omit or aggregate
the least relevant state variables
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