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Abstract

Given incomplete information it can be difficult for central planners to

design optimal reservoir storage policies. An increasingly popular option, is

to decentralise reservoir operation by defining storage property rights. One

approach is ‘capacity sharing’ (Dudley and Musgrave 1988) where water users

are assigned shares in the storage capacity and inflow of a reservoir.

As with spatial water markets, decentralised storage is subject to exter-

nality problems. User storage decisions can have external effects on other

users, via their effect on spills and evaporation losses. Even sophisticated

approaches like capacity sharing are subject to externalities, including the

problem of ‘internal spills’.

This paper presents a model of a regulated river system, in which a large

number of water users (e.g., irrigation farmers) make their own storage deci-

sions as well as engaging in a water spot market. The purpose of the model

is to evaluate alternative approaches to storage property rights. Given the

presence of externalities our model represents a stochastic game. We solve

this model numerically using reinforcement learning methods.

We find that capacity sharing achieves close to optimal levels of welfare

and is the preferred approach for almost all considered parameterisations of

the model. Poorly specified storage rights impose welfare losses by inducing

storage behaviour that departs significantly from the optimum. In particular,

open access storage — where spills and evaporation losses are socialised —

can lead to dramatic over storage.

1



1 Introduction

Storage rights allow water users to hold private storage reserves in public reser-
voirs. As such, storage rights at least partially decentralise reservoir operation.
User level storage rights are now common place in the Australian Murray-Darling
Basin (MDB). Similar arrangements exist in a number of western US rivers. Re-
cently a form of storage right has even emerged on the Colorado river (Hughes
2013).

Surface water storage rights have been examined in a number of Australian studies
(Dudley and Musgrave 1988, Brennan 2008, Hughes and Goesch 2009b). Existing
research emphasises the limitations of central control of reservoirs. The idea being
that storage rights may improve the inter-temporal allocation of water just as
trading may improve the spatial allocation.

The complexity of water makes defining storage rights difficult. Storage capacity
represents a ‘congestible good’ (Randall 1983), switching from non-rival to rival as
storages fill. Further, storage losses vary non-linearly with volumes. As a result of
these complexities, storage rights are never completely exclusive.

In this paper, we compare a number of approaches to water storage rights ob-
served in practice, including the capacity sharing model advocated by Dudley
(1988a). These alternatives differ on two dimensions: how they reflect the storage
capacity constraint (spills) and how they reflect evaporation losses. Such a com-
parison has not yet been attempted in the literature, primarily because it requires
a decentralised model.

In this paper, we present a decentralised (multi-agent) model of a regulated river
system. In this model each user makes forward looking storage decisions, while
also engaging in a water spot market. Formally the model is a stochastic game:
each user is faced with a Markov decision process (MDP) where the payoffs and
state transition probabilities are dependent of the actions of other users.

We solve this model numerically with a relatively novel application of reinforce-
ment learning. Reinforcement learning is a sub-field of machine learning, which
provides a range of algorithms for solving MDPs by simulation. The model is
solved for a large number of parameterisations, using parameter distributions
reflective of the Australian MDB.

The goal of this chapter is to address the following questions: which system of
storage rights maximises social welfare? How do the systems affect user storage
behaviour and therefore aggregate storage volumes? How do the systems affect
the distribution of welfare? And finally, how do the answers to these questions
vary with the parameterisation of the model?

2



2 The problem

Below we introduce the general set up of the model, in Section ?? we present a
parametric version.

This paper is concerned with an abstract regulated river system summarised in
Figure 1. This system involves a single reservoir which receives stochastic inflows
and delivers water to n consumptive users located at a single demand node.

Inflow, It

Storage release, Wt

Demand node

Consumptive use, Qt =
Pn

i=1 qit

Reservoir Storage volume, St

Figure 1: A simple regulated river system

The model is in discrete time with an infinite time horizon. The storage has
transition rule

St+1 = min{max{St −Wt − Lt + It+1, 0}, K}

0 ≤Wt ≤ St

Here St is the storage volume, It the stochastic inflow, Wt the storage release
(withdrawal), Lt the storage evaporation loss and K the fixed storage capacity.
Storage losses are a concave function L0 of storage contents.

Lt = L0(St) ∈ [0, St]

For convenience we define storage spills Zt+1 as
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Zt+1 = max{It+1 − (K− St + Wt + Lt), 0}

qit is the volume of water consumed by user i in period t. Total consumptive water
use Qt = ∑n

i=1 qit is constrained by the volume delivered to the demand node

Qt =
n

∑
i=1

qit

Qt ≤Wt − f1(Wt)

where L1 is a loss function, L1(Wt) ∈ [0, Wt].

The users have payoff functions πi(qit, It). Here the inflow It acts as a proxy for
moisture availability (e.g., irrigation area rainfall). πi is concave in qit and It. qit

and It are substitutes.

2.1 The planners problem

The planners problem is to set policy variables Wt and qit, conditional on state
variables St, It and eit, so as to maximise the expected discounted sum of user
payoffs

max
{qit,Wt}t=∞

t=0

E

{
∞

∑
t=0

βt
n

∑
i=1

πi(qit, It)

}

subject to to the above water supply constraints.

2.2 The decentralised problem

In the decentralised version property rights are defined, which facilitate both a
water spot market and user level storage decisions. Below we outline the general
form of the problem, before detailing specific scenarios in Section 3.

2.2.1 The property rights framework

Here each user controls their own ‘water account’. Each period these accounts
are credited with a share λi of inflow and debited for user withdrawals wit. The
evolution of user account balances sit follows

sit+1 = min{max{sit − wit − lit + λi It+1 + xit+1, 0}, kit}
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wit ≤ sit

n

∑
i=1

λi = 1,
n

∑
i=1

sit = St,
n

∑
i=1

wit = Wt,
n

∑
i=1

lit = Lt

where lit are user storage loss deductions, kit are user account limits and xit are
the ‘storage externalities’. Intuitively, xit are account reconciliations, which ensure
the total account balance ∑n

i=1 sit matches the physical storage volume St.

A storage rights system is defined by the specification of lit, kit and xit. A number
of approaches are defined in the following section. For now, note that xit can be a
rather complicated function of the storage balances and withdrawals of all users
st = (s1t, s2t, ..., snt) and wt = (w1t, w2t, ..., wnt) as well as physical quantities St,
Wt, Lt and It.

2.2.2 The water spot market

Users receive water allocations ait adjusted for delivery losses. For now we assume
linear delivery losses

ait = (1− δ1b)wit

Water allocations can be used or traded on the spot market, subject to the market
clearing condition

n

∑
i=1

qit =
n

∑
i=1

ait

The spot market is subject to a positive transfer cost τ, such that user payoffs uit

are defined

uit =





πh(qit, It) + Pt(ait − qit) if ait − qit ≥ 0

πh(qit, It) + (Pt + τ)(ait − qit) if ait − qit < 0

where Pt is the market price for water. The effective user demand functions d̃h can
then be defined as

qit = d̃h(Pt, τ, ait, It, eit) =





dh(Pt, It, eit) if pit ≤ Pit

ait if Pt < pit < Pit + τ

dh(Pt + τ, It, eit) if pit ≥ Pit + τ
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pit = d−1
h (ait, It, eit)

d−1
h (qit, It) = max

{
∂πi

∂qit
, 0
}

2.2.3 The users’ problem

The users’ problem is to determine wit and qit each period in order to maximise
their expected discounted payoff

max
{qit,wit}t=∞

t=0

E

{
∞

∑
t=0

βtuit

}

subject to the above water accounting constraints, the behaviour of the other
agents and the physical constraints as detailed in the planners problem. Formally
this problem is a stochastic game, solution concepts and methods are detailed later
in Section 7.

3 Policy scenarios

Our goal is to use the above framework to compare a number of water storage
right systems. These systems differ on two dimensions: how they reflect the
storage capacity constraint (how kit and xit are defined) and how they reflect
evaporation losses (how lit is defined).

In Section 5 we provide mode detail on how these scenarios relate to the storage
rights systems of the western US and the Australian MDB.

3.1 Storage capacity rights (capacity sharing) - CS

Here each user is assigned both a share of total storage capacity and a share of
inflow. For now we assume storage and inflow shares are equal, so that users’
accounts follow

sit+1 = min{max{sit − wit − lit + λi It+1 + xit+1, 0}, λiK}

This scenario is representative of capacity sharing as proposed by Dudley and
Musgrave (1988). Capacity sharing has been implemented at the irrigator level in
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two Queensland MDB irrigation areas (Hughes and Goesch 2009b). The state level
property rights of NSW and VIC on the Murray river are another example of this
approach. Similar storage right arrangements exist in Northern NSW (Hughes
et al. 2013) and in some US systems, specifically the Texas Lower Rio-Grande (see
Section 5 for more detail).

While capacity sharing lessens storage externalities in comparison with alterna-
tives it does not eliminate them. With capacity sharing we have ‘internal spills’:
where a users account reaches its limit and excess inflow is forfeited and reallo-
cated to other users.

Here xit+1 represents user i′s share of the total pool of internal spills at time t.
xit+1 = 0 for all i if no accounts reach capacity or if all accounts reach capacity
(and the storage physically spills) . With only two users {i, j}, xit+1 is defined:

xit+1 =





max{λj.It+1 − (λjK− sjt + wjt + ljt), 0} if Zt+1 = 0

0 otherwise

With a large number of users calculating xit+1 is complicated since an initial
reallocation of internal spills may fill further accounts creating more internal spills
and so on. In this case xit+1 can be calculated iteratively.

3.2 Spill forfeit rules (spillable water accounts) - SWA

Spill forfeit rules are a common alternative to storage capacity rights. Here there
are no limits on storage account volumes, however in the event of a physical
storage spill, users are subject to spill deductions in proportion to their account
volumes, specifically:

sit+1 = min{max{sit − wit − lit + λi It+1 + xit+1, 0}, K}

xit+1 = −Zt

(
sit − wit − lit + λi(It+1 − Zt+1)

K

)

Such an approach is adopted in Northern Victoria under the banner of ‘spillable
water accounts’. Similar approaches also exist in the US (see Section 5.

3.3 Open access storage (unlimited carryover) - OA

Here storage capacity is treated as an open access resource. Specifically, there
are no limits on users storage volumes and no loss deductions. Rather all spills
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and losses are allocated based on inflow shares (i.e. ‘socialised’), such that user
accounts follow:

sit+1 = min{max{sit − wit + λi It+1 + xit+1, 0}, K}

xit+1 = λi(Lt + Zt)

With a large number of users, open access will result in too much water being
stored. While there are few examples of pure open access storage in the MDB,
many systems can approach open access under certain conditions, if rules designed
to limit storage fail to bind (Hughes et al. 2013).

3.4 No storage access (use it or lose it) - NS

In this scenario users have no storage rights. Specifically any water unused at the
end of the period is reallocated across all users in proportion to inflow shares, so
that user accounts are simply:

sit+1 = λiSt+1

With a large number of users the incentive is to ’use it or lose it’. That is to consume
or trade all water allocations or at least until the users marginal value for water or
the effective market price is zero.

This scenario is broadly reflective of the MDB prior to the introduction of storage
rights. While central storage policies were in place, typically the maximum release
volume was well in excess of demand, such that significantly more water was
allocated than was ever used (MDBMC 1995).

3.5 Storage loss deduction - LD

For the capacity sharing (CS) and spillable water account (SWA) scenarios we
consider two approaches to storage loss deductions. The first is to allocate total
losses in proportion to user account balances:

lit =
(

sit

St

)
Lt

This is essentially the approach adopted to storage deductions in southern Queens-
land (Hughes and Goesch 2009b). A similar approach is adopted in northern
Victoria.
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3.6 Socialised storage loss - SL

The second and more common approach (Hughes and Goesch 2009b) is to socialise
storage losses, that is to allocate total losses in proportion to user inflow shares

lit = λiLt

4 Literature

Existing literature on surface water storage relies heavily on social planner models.
While storage rights have been considered in a number of Australian studies
(Dudley and Musgrave 1988, Brennan 2008, Hughes and Goesch 2009b), they
have rarely been explicitly modelled. Instead, these authors generally argue that
optimal scenarios are broadly reflective of a storage rights outcome.

The literature on surface water storage rights begins with the work of Norman
Dudley (Dudley 1988b;a; 1992; 1999), a long time advocate for capacity sharing:

[Capacity sharing] is a property rights structure and institutional ar-
rangement that allows multiple water users to each act as if they had
their own small reservoir on their own small stream. It does so by
providing each user, or small group of users, of reservoir water with
long-term rights to a percentage of reservoir inflows and percentage
of empty reservoir capacity or space in which to store those inflows,
and from which to control releases. Their reservoir releases through
time can be managed according to their particular supply reliability
preferences....Their probabilities of water supply from their stream-
flow shares can be calculated directly from historical or synthesised
streamflow data. (Dudley 1999; pp. 243)

Here Dudley and Musgrave (1988) identify two advantages of capacity sharing:
closer alignment of storage policy with user preferences and a reduction in policy
uncertainty. However, Dudley and Musgrave (1988) are careful to acknowledge
that under capacity sharing, users are not entirely independent:

[Capacity sharing users] are like a bank depositor who cannot incur a
negative balance, cannot accumulate deposits in excess of a maximum
and cannot control amount or timing of deposits. Instead, deposits
are made according to a stochastic process.... However, beyond these
stochastic deposits... there may be extra deposits made periodically
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to a depositor’s account because of the heterogeneous behavior of all
depositors. (Dudley and Musgrave 1988; pp. 650)

Dudley and Musgrave (1988) identify two sources of interaction: internal spills
and non-linear storage losses. They note that under two restrictive conditions:
identical storage decisions (such that internal spills are zero) and linear storage
losses, the problem can be condensed to that of a representative agent. They then
present a simulation model in which users are assigned policy functions derived
from the planners solution.

Alaouze (1991) consider capacity sharing using a simplified analytical framework,
in which there is no spot market, no internal spills and linear losses. He demon-
strates that capacity sharing achieves equal or better welfare, than an optimal
storage but arbitrary (proportional) use allocation scenario. The idea being that
tailored storage polices can help minimise water trade requirements.

Recently, Truong and Drynan (2013) presented analytical results for capacity
sharing under an assumption of perfect spot markets and no evaporation losses.
Under these assumptions capacity sharing achieves a socially optimal outcome
in which all users adopt identical storage policies and internal spills never occur
(Truong and Drynan 2013).

Brennan (2008; 2010) evaluated government storage policy, using a model of the
Goulburn region in Victoria. Brennan (2008) emphasised the role of forfeited
(unused) water allocations. Brennan (2008) showed that, given myopic storage
policy and an absence of storage rights (our scenario NS), the introduction of
trading can decrease welfare, by reducing forfeited allocations and therefore
storage reserves.

While Brennan (2008; 2010) makes the case for storage rights she is largely am-
bivalent about their form. In early work Brennan and Scoccimarro (1999) raised
concerns about internal spills under capacity sharing

...while the aim of the capacity-sharing institution is to make water
users independent of each other the physical reality is that they are
interdependent. As an example of such interdependency, the conser-
vative operator will have a large frequency of ‘[internal] spills’ which
would increase the volume of water flowing into the capacity shares of
the less conservative users in the dam. The management of this water ...
has not been dealt with adequately in the literature on capacity sharing
(Brennan and Scoccimarro 1999; pp. 84).

Storage rights have also been considered in detail by the Australian Bureau of Agri-
cultural and Resource Economics and Sciences (ABARES). Hughes and Goesch
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(2009b) outline some of the limitations of standard water rights (i.e., information
problems, transfer costs and policy uncertainty) and simple storage rights (i.e.,
externalities) relative to capacity sharing. Hughes (2010) consider generalising
capacity sharing to more complex river systems with multiple storages, inflow
sources and demand nodes.

5 Storage rights in the MDB and western US

Currently, all major MDB regulated rivers have some form of user level storage
right. Approaches to storage rights can be broadly classified into four systems:
‘carryover rights’ (Southern NSW), ‘spillable water accounts’ (Northern VIC),
‘continuous accounting’ (Northern NSW) and ‘capacity sharing’ (Southern QLD).
Hughes et al. (2013) consider these alternatives in some detail.

A key issue is the annual water accounting framework in the southern MDB,
which makes it difficult to internalise storage capacity constraints. In response,
the states impose arbitrary rules, such as limits on annual carryover volumes.
However, these rules are clumsy and often fail to bind, resulting in close to open
access outcomes (Hughes et al. 2013).

A key example, is the Victorian Murray region during the spill events of 2010-11
and 2011-12. During these events storages rights allowed open access despite
binding capacity constraints. This resulted in substantial externalities, as users
rushed to exploit the situation by transferring water into Victorian storage accounts
(Hughes et al. 2013).

Continuous accounting systems involve more frequent water accounting, allowing
constraints to be internalised with account limits. While closer to a capacity sharing
approach, there remain important differences: account limits don’t explicitly match
storage capacity, storage losses are socialised, reconciliations occur sporadically
and water accounting is monthly (rather than daily as in St George).

In Southern QLD, user level capacity sharing has been adopted in line with the
proposals of Dudley and Musgrave (1988). Hughes and Goesch (2009a) document
the capacity sharing schemes at St George and MacIntyre Brook, observing much
enthusiasm for the approach, both among water users and water managers. Water
accounting data showed significant heterogeneity in user storage policies and
significant, albeit infrequent, internal spills (Hughes and Goesch 2009a).

Many of these river systems involve multiple storages. Typically, storage rights
are defined over aggregate storage capacity and the problem of distributing water
across storages is handled centrally. In most cases, this approximation is likely to
be adequate — particularly for storages in series (Hughes 2010). The state level
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arrangements on the Murray are an exception, where NSW and VIC hold distinct
shares to Hume and Dartmouth dams, see MDBA (2011).

Some caution must be taken when linking our policy scenarios with real world
systems. Capacity sharing is a broader concept than our CS scenario. Capacity
sharing involves reforms taken for granted here, including proportional inflow
rights (Hughes et al. 2013). In NSW and VIC, inflows are still allocated centrally,
which can lead to policy uncertainty (Hughes et al. 2013). Finally, the Northern Vic-
torian approach is not precisely represented by any single scenario as it combines
aspects of the SWA, CS and OA scenarios.

User level storage rights are rare in the Western US. Two exceptions are the Texas
Lower-Rio Grande and the South Platte Basin in Colorado, which both have water
rights and spot markets more reminiscent of the Southern MDB . Storage rights in
the Texas Lower Rio Grande are remarkably similar to the continuous accounting
systems of Northern NSW. The Southe Platte basin has a system similar to southern
NSW carryover rights.

In central California, ground water banking is typically the first option for storing
unused water. However, water contractors (irrigation districts) do hold rights over
some storages, including San Louis reservoir. Similar to Northern VIC, San Louis
involves ‘spill forfeit rules’.

On the Colorado river a form of storage right known as Individually Created
Surplus (ICS) emerged in 2007 (Hughes 2013). While these rights are subject to
many limitations they effectively allow irrigation districts to store unused water
allocations in Hoover dam. Since the introduction of ICS over 1200 GL of water —
around 10 per cent of the current balance of Hoover dam — has been accumulated
under these rights (Hughes 2013).

6 A parametric model

6.1 Functional form

Inflows It+1 are assumed drawn from a gamma distribution with positive first
order autocorrelation (a standard assumption for annual streamflow, see McMahon
et al. 2007):

It+1 = ρI It + εt+1

εt+1 ∼ Γ(kI , θI)

0 < ρI < 1
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We adopt a standard storage loss function reflective of generic storage geometry
(see Lund 2006)

Lt = δ0.α(St)
2/3

We adopt a linear delivery loss function with fixed and variable losses

Qt ≤ max{Wt(1− δ1b)− δ1a, 0}

The consumptive users U = {1, 2, ..., n} are are grouped into two classes, low
reliability users Ulow = {i ∈ U|i ≤ nlow} (i.e., broadacre farms) and high reliability
users Uhigh = {i ∈ U|i > nlow} (i.e. horticulture farms).

The users have quadratic profit functions πh(q̃it, Ĩt, eit) where h ∈ (low, high)
indicates membership to Ulow,Uhigh, Ĩt = It/E[It], q̃it = qit/Ah, Ah is the farm
land area for users in class h and eit is a user specific productivity shock which
follows an AR(1) process:

πh(qit, Ĩt, eit) = Ah.eit(θh0 + θh1q̃it + θh2q̃2
it + θh3 Ĩt + θh4 Ĩ2

t + θh5 Ĩt.q̃it)

eit = 1 + ρe(ei,t−1 − 1) + ηit

ηit ∼ N (0, σ2
η)

0 < ρe < 1

Here the quadratic expression reflects profit per unit land, conditional on water
use per unit land and climate conditions.

6.2 Parameter distributions

In order to maintain generality, parameter distributions are specified rather than
point estimates. We provide a brief outline of the parameterisation below. The
complete treatment is contained in my draft thesis and can be provided on request.

Supply side parameters are based on a statistical analysis of 22 storages in the
MDB (all those greater than 50 GL in capacity). A data set on these storages was
compiled from various sources including NWC (2011), ANCOLD (2013) and BOM
(2013). Where possible, parameter distributions are assumed uniform over the
15th to the 85th percentiles of our data set.

Demand side parameters are based on an econometric analysis of irrigation farms
in ABARES survey of irrigation farms in the MDB (Ashton and Oliver 2012). High
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reliability water demand is estimated using a sample of southern MDB grape
farms and low reliability a sample of southern MDB broadacre farms.

Storage capacity K is the numéraire in parameterisation and is fixed at 1000 GL.
The central case is defined by the mean values of the parameter distributions. Key
parameter assumptions are summarised below:

Table 1: Selected parameter ranges

Figure 2: Social welfare, when It = E[It] and eit = E[eit] = 1.
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The demand side of the model is summarised by Figure 2, which shows the
planners’ payoff function implied by the central case parameters — that is ∑U uit

against Qt, assuming perfect zero transaction cost markets. The steep portion is
high reliability demand, which in the central case accounts for around 20 per cent
of water use in a full supply year.

The inflow shares λi are determined by a single parameter Λhigh: the proportion
of inflow / storage capacity assigned to high reliability users.

λi =





Λhigh/nhigh if i ∈ Uhigh

(1−Λhigh)/nlow if i ∈ Ulow

Inflow shares are set proportional to target demand volumes Q̄high which are
defined as ∑Uhigh

qit for an ’average’ water year: in which It = E[It] and Wt = It. A
uniform distribution for Λhigh over the range 1 to 2 ×Q̄high/Q̄ is selected - since
high reliability users tend to demand larger than proportional shares (an issue
considered further in my thesis).
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7 Solving the model

Given non-market interactions between users, the decentralised model is a stochas-
tic game (Shapley 1953). In stochastic games, each player faces a Markov Decision
Process (MDP) where the payoffs and or state transition are dependent on the
actions of other players.

Stochastic games present a number of conceptual and practical challenges. The first
is defining a solution concept. The second is establishing a method for efficiently
computing solutions. We outline our approach below, which is based around the
economics of learning in games (Fudenberg and Levine 1998) and the computer
science methods of reinforcement learning (Sutton and Barto 1998).

7.1 Equilibrium concepts

In our model, spot market equilibrium is defined by a market clearing price P∗t , as
a function of It, et and wt, which satisfies

qit = d̃−1
h (P∗t , τ, ait, It, eit) ∀ i

With q∗it determined by the spot market equilibrium, a solution to the users’ prob-
lem is a policy function for wit

w∗it = fh(st, et, It)

A Markov Perfect Equilibrium (MPE) (Maskin and Tirole 1988) is then defined
by a set of policy functions fh(.) which simultaneously solve all users’ problems.
An immediate concern is that the state space for the users’ problems scale in the
number of users n. With large n this approach is neither feasible nor realistic.

A common response, is to replace opponent state variables with relevant aggregate
statistics. Weintraub et al. (2008) describe an equilibrium in these restricted policies
as an Oblivious Equilibrium (OE).

Here we assume users have knowledge of the storage volume St and inflow It, as
well as their own account balance sit and productivity shock eit but are ‘oblivious’
to s−i

t and e−i
t , restricting our attention to policy functions of the form

w∗it = fh(sit, St, eit, It)

Weintraub et al. (2008) establish existence of OE conditional MPE. Unfortunately,
there are no general MPE existence (or uniqueness) results (for a review of the
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recent literature see Duggan 2012). Weintraub et al. (2008) argue that OE is less
susceptible to multiple equilibria in practice.

7.2 Learning in games

The theory of learning in games describes the behaviour of less than fully rational
agents in repeated games. In particular, how players adapt their policies in
response to observed past play. There is much literature on learning in repeated
games, considering how closely different learning models reflect human behaviour
and if and when learning models converge on equilibria (see Fudenberg and
Levine 1998).

The economic literature on learning in stochastic games is surprisingly scarce.
Here more significant contributions have come from the field of computer science.
Many recent studies combine computational techniques — such as reinforcement
learning — with equilibrium concepts from game theory (for a review see Busoniu
et al. 2008). Fudenberg and Levine (2007) provide an economic perspective on this
literature.

7.3 A reinforcement learning approach

Reinforcement learning (also known as approximate and neuro dynamic program-
ming) is a subfield of machine learning, concerned with solving MDPs. Reinforce-
ment learning algorithms optimise through simulation and so don’t require an ex
ante model of the ‘environment’ (i.e., probability transition and pay-off functions).
Rather agent’s ’learn’ optimal policies by observing the outcomes — the payoffs
and state transitions — of their actions.

Our approach — based on the method of ‘Fitted Q iteration’ (Ernst et al. 2005) —
is summarised briefly below. To begin we derive guesses for user policy f̂h(Xit)

and value functions v̂h(Xit) from the planners solution, where Xit is the state
vector (st, St, et, It). Then the users’ problems are solved — holding opponent
polices fixed at initial guesses — by fitted Q-V iteration. Then we proceed to a full
learning algorithm, where the population of polices varies between each iteration,
this stage is outlined below

7.3.1 Multiple agent fitted Q-V iteration

1. Simulate the decentralised storage problem for T periods, using current user
policy functions f̂i(Xit), with exploration polices (i.e., partially randomised
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policies) assigned to a small subset of users U e ⊂ U . Obtain the action wit,
payoff uit and state Xit = (sit, St, eit, It) samples

{wit, uit, Xit, Xit+1|t = 1, ..., T, i ∈ U e}

2. Generate the Q ‘action-value’ function samples qit for t = 1, ..., T, i ∈ U e

qit ← uit + βv̂h(Xit+1)

3. Fit continuous Q functions Q̂h(wit, Xit) for each user class. This step involves
regression problems, with dependent variables qht and explanatory variables
wht, Xht (with samples grouped by user class h).

4. Optimise the Q functions for a sub set of the state samples and fit updated
policy f̂ 1

h (.) and value v̂1
h(.) functions

f̂ 1
h (Xit) = arg max

wit≤sit

Q̂h(wit, Xit)

v̂1
h(Xit) = max

wit≤sit
Q̂h(wit, Xit)

5. Assign updated policy functions f̂ 1
h to a random sample of users U 1 ⊂ U ,

then return to step 1 and repeat for a fixed number of iterations.

The above approach can be interpreted as a learning method. Within the computer
science literature the approach represents ‘rational’ agent learning (Bowling and
Veloso 2001): learning that converges on best response policies given stationary op-
ponent policies. Within the economic literature, the approach might be described
as an ’optimisation-based’ learning method (Crawford 2013).

While the approach is to be interpreted as a learning method, it represents only a
small departure from algorithms used to computed rational expectations equilibria.
For example, the approach is similar to the value iteration method used to solve
stochastic games (Shapley 1953). It is also related to the Krusell and Smith (1998)
style algorithms used to solve macro heterogeneous agent models. In many
ways, the approach represents a middle ground between the rational expectations
methods of modern macroeconomics and the simulation and genetic algorithm
methods of agent based modeling (Tesfatsion and Judd 2006).

7.4 Computation

Successful implementation of reinforcement learning rests on algorithm design
choices particularly: sample sizes, exploration policies and function approximation
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schemes. A complete discussion of the computational approach — contained in
my draft thesis — can be provided on request.

For function approximation we use a version of tile coding (Sutton and Barto
1998). The model is coded in python. Time sensitive components are translated
to compiled c via cython. The implementation makes extensive use of parallel
computing. The whole process completes in under 5 minutes on a standard 4 core
desktop.
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8 Results

8.1 Central case

We begin with results for the central case parameters.

Each iteration of the algorithm involves a simulation of length T. To begin, we
show how the sample means from each simulation stage evolve as the learning al-
gorithm progresses. For example, Figure 3 shows the mean storage level 1

T ∑T
t=1 St

at each iteration — beginning with the planners solution as iteration 0. Our fi-
nal results are sample statistics from the last iteration of the algorithm, these are
presented in Tables 3 to 7.

Figure 3: Mean storage by iteration
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Immediately some expected results are apparent. Open access results in significant
over storage and no storage access in significant under storage. Spill forfeit rules
generate higher storage levels than capacity sharing — which is closest to the
planner’s solution.

Importantly the differences between scenarios are stable over the course of the
algorithm. While the algorithm does not converge to a precise equilibrium, the
user value and policy functions show a tendency to converge rather than diverge
or cycle spectacularly (Figures 5 and 6).
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Figure 4: Mean storage reserve by iteration
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Figure 5: Value function error (Mean absolute percentage deviation)
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(a) Low reliability
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(b) High reliability

Figure 6: Policy function error (Mean absolute percentage deviation)
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In the central case, capacity sharing results in the highest mean social welfare,
followed closely by spill forfeit rules (Figure 7, Table 2). Open access storage is
only a modest improvement over no storage access.

Figure 7: Mean social welfare by iteration
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Unsurprisingly, the mean welfare differences are relatively small — at least in this
central case. As is standard in the storage literature, changes in the variance of
welfare are larger than changes in the mean (see Table 2). Further, the aggregate
welfare effects hide some larger distributional results.

Scenarios that result in over storage (OA, SWA) favour high reliability users at
the expense of low reliability users — and visa versa (see Tables 6 and 7). These
effects are explained partly by the storage differences, but also by the nature of the
externalities xit (discussed below, see Figure 10)

Figure 8 shows mean withdrawals Wt (the sum of user withdrawals) conditional
on the storage level. Note that, mean withdrawals are slightly lower in spill years
(when St = K) as demand for water is depressed by high inflows.

Under all scenarios, a significant degree of heterogeneity is observed in user
storage policies. Figure 9 shows mean withdrawals as a proportion of account
levels for high and low reliability user groups. Even with a relatively moderate
transaction cost, we observe a high degree of specialisation: high reliability users
adopt more conservative storage policy.
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Figure 8: Aggregate withdrawal policy, E[Wt|St]
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Figure 9: User withdrawals over storage,
1
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Figure 10 shows mean externalities as a proportion of mean account balances for
low and high user groups. Externalities are highest under OA and lowest under
CS. Under CS, externalities are positive due to internal spills. Internal spills tend
to favour low reliability users, as they flow from users with high balances to those
with low balances. In contrast, externalities favour high reliability users under
open access.

Figure 10: User externalities over storage,
1
T ∑T

t=1 ∑Uh xit
1
T ∑T

t=1 ∑Uh sit

CS SWA OA NS
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Tables 3 to 7 also contain results for the socialised evaporation loss scenarios
(CS-SL, SWA-SL). Socialising losses leads to small increases in mean storage and
decreases in mean welfare. The effect of socialising losses is more pronounced
under the SWA scenario. On a distributional level, socialised losses tend to favour
high reliability users.

Finally, the large differences in storage levels between scenarios, lead to some sig-
nificant changes in storage spills (see Table 5) which may have welfare implications
for in-stream users — or for downstream consumptive users.
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Table 2: Social welfare ∑n
i=1 uit ($M)

Mean SD 2.5th 25th 75th 97.5th

CS 195.1 22.8 136.1 188.0 209.4 217.4
CS-SL 195.1 21.4 142.5 188.6 208.4 216.4
SWA 195.0 22.0 136.7 189.6 208.5 216.4
SWA-SL 194.7 20.0 143.5 190.8 206.4 213.4
OA 192.9 17.6 148.5 189.2 202.7 209.7
NS 192.0 27.8 115.0 179.9 210.9 218.8
Planner 195.4 26.1 124.5 188.1 211.5 219.3

Table 3: Storage St (GL)

Mean SD 2.5th 25th 75th 97.5th

CS 684.3 287.8 133.1 445.8 1,000.0 1,000.0
CS-SL 701.7 281.8 145.7 473.4 1,000.0 1,000.0
SWA 704.2 287.3 134.4 467.9 1,000.0 1,000.0
SWA-SL 729.3 278.6 148.3 511.2 1,000.0 1,000.0
OA 771.2 269.3 161.8 580.9 1,000.0 1,000.0
NS 599.2 302.0 102.3 339.0 923.2 1,000.0
Planner 659.8 298.6 114.3 404.3 1,000.0 1,000.0

Table 4: Withdrawal Wt (GL)

Mean SD 2.5th 25th 75th 97.5th

CS 512.9 174.0 126.8 386.5 669.2 693.1
CS-SL 505.2 162.5 138.4 391.0 649.4 672.5
SWA 498.1 152.6 127.9 402.0 615.7 650.6
SWA-SL 483.2 131.9 140.9 411.7 578.9 599.2
OA 443.4 99.1 154.6 406.9 512.9 544.4
NS 555.1 259.6 97.7 331.6 831.4 886.8
Planner 523.5 190.6 114.3 382.9 676.4 721.5

Table 5: Spills Zt (GL)

Mean SD 2.5th 25th 75th 97.5th

CS 123.9 272.2 0.0 0.0 67.2 1,040.4
CS-SL 131.4 280.5 0.0 0.0 93.0 1,066.0
SWA 138.7 288.8 0.0 0.0 115.0 1,077.3
SWA-SL 150.9 301.0 0.0 0.0 152.4 1,119.5
OA 189.9 336.2 0.0 0.0 256.0 1,228.5
NS 87.9 225.7 0.0 0.0 0.0 960.4
Planner 115.3 262.0 0.0 0.0 36.2 993.2
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Table 6: Total low reliability payoff ∑i∈U low uit ($M)

Mean SD 2.5th 25th 75th 97.5th

CS 85.5 13.1 57.3 76.0 96.1 100.7
CS-SL 85.0 12.8 56.7 76.1 95.3 99.9
SWA 84.9 12.6 56.6 76.0 94.7 99.2
SWA-SL 84.0 11.5 57.0 76.8 92.6 96.7
OA 82.2 8.6 59.0 79.8 87.7 92.1
NS 86.3 13.1 61.5 75.6 98.0 103.0
Planner 83.8 19.2 42.0 72.9 97.7 102.3

Table 7: Total high reliability payoff ∑i∈U high uit ($M)

Mean SD 2.5th 25th 75th 97.5th

CS 109.6 15.1 62.0 107.7 116.4 120.9
CS-SL 110.2 13.5 74.9 108.0 116.3 120.8
SWA 110.2 15.4 61.4 108.3 117.0 121.5
SWA-SL 110.7 13.8 74.4 109.1 116.7 121.1
OA 110.8 12.7 85.8 109.1 116.3 120.6
NS 105.8 20.1 32.6 104.1 116.0 121.1
Planner 111.5 12.4 82.2 110.7 116.6 120.5
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8.2 General case

Here 110 parameter sets were randomly drawn. For each set of parameters the
model was solved for the CS, SWA, OA and NS scenarios. For each parameter
set and each scenario, we calculate the following sample means (from the final
iteration of the learning algorithm):

• Mean social welfare: 1
T ∑T

t=1 ∑n
i=1 uit

• Mean low and high reliability welfare: 1
T ∑T

t=1 ∑i∈U low uit, 1
T ∑T

t=1 ∑i∈U high uit

• Mean storage: 1
T ∑T

t=1 Sit

• Mean spills: 1
T ∑T

t=1 Zit

For each statistic we also define an index relative to the CS scenario: Ym
j /YCS

j ,
where Ym

j is the value of statistic Y for scenario m ∈ {CS, SWA, OA, NS} under
parameter set j. Summary statistics over these sample means and their indexes,
are presented at the end of this section in Tables 8 to 19

8.2.1 Social welfare

Social welfare results are summarised in Tables 8 and 9 and Figure 11.

Figure 11: Social welfare index
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On average, CS achieves the highest mean welfare. On social welfare grounds,
CS is the preferred scenario in 65 of the 110 cases, OA in 20, SWA in 16 and NS in
five. In those cases where CS is not preferred, the welfare differences are small.
The welfare differences between SWA and CS are almost always trivial. By far the
largest welfare losses occur in the NS scenario.
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We can gain further insight by examining correlations between our indexes and the
parameters. Here the mean welfare indexes were regressed against the parameters,
using a non-parametric Random Forests method (Geurts et al. 2006).

The two most important parameters are: the ratio of mean inflow to storage
capacity and inflow variation (Table 11). In low inflow (and high variance) cases
NS performs relatively poorly (see Figure 12). The inverse result is observed for
the OA scenario — and to a much lesser extent the SWA scenario.

The intuition here is that in high inflow cases the cost of storage (i.e., the risk of
spill) is high relative to the benefits. As such OA — which socialises these costs —
performs poorly, while NS — which socialises both benefits and costs — performs
relatively well.

Figure 12: Welfare index regression results
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(b) Inflow variability, cvI
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(c) Mix of high demand, Q̄high/Q̄
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(d) Transaction cost, τ
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Figure 13 plots the preferred scenario against the two main inflow parameters.
Here the prefered scenario was also regressed (as a qualitative dependent variable)
against the parameters (using a Random Forest classifier). Figure 13 shows the
predicted space in which each scenario is preferred (given other parameters fixed
at sample means). Specifically, Figure 13 shows that CS is the preferred scenario for
the majority of the parameter space (the shaded red area), but the OA is preferred
in some low inflow / high variance cases (the shaded blue area).

The transaction cost τ, and the mix of high / low users also have significant effects
on the preferred scenario (Table 10): higher transaction costs favour SWA over CS,
because internal spills become more significant.

Figure 13: Preferred scenario by inflow parameters, with classifier results
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8.2.2 Welfare distribution

Distributional differences are generally larger than social welfare differences, see
Tables 12, 13, 14 and 15 and Figures 14 and 15 below. In general, OA favours
high reliability users, while NS favours low reliability users. While SWA and
CS are barely separable on social welfare grounds, there are some noticeable
distributional differences, with SWA favouring high reliability users.

Figure 14: Low reliability payoff index
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Figure 15: High reliability payoff index
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8.2.3 Storage

The scenarios all induce significant changes in mean storage levels (Tables 16 and
17 and Figure 16). In almost all cases, OA induces significantly higher storage
reserves than CS, NS significantly lower and SWA slightly higher.

Figure 16: Storage index
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8.2.4 Spills

Changes in mean storage levels lead to amplified changes in storage spills (Tables
18 and 19 and Figure 17). Higher mean spills reflect both an increase in the
frequency and magnitude of spill events.

Figure 17: Spills index
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Table 8: Mean social welfare 1
T ∑T

t=1 ∑n
i=1 uit ($M)

Mean Min Q1 Q3 Max

CS 181.90 45.86 114.67 235.16 370.16
SWA 181.76 45.85 114.40 234.92 369.91
OA 179.73 45.78 114.59 230.27 362.79
NS 178.93 43.05 110.08 232.94 366.05
Planner 182.68 46.45 114.08 235.23 372.18

Table 9: Social welfare index

Mean Min Q1 Q3 Max

CS 1.000 1.000 1.000 1.000 1.000
SWA 0.999 0.996 0.999 1.000 1.003
OA 0.991 0.965 0.983 1.000 1.007
NS 0.978 0.896 0.968 0.993 1.002

Table 10: Preferred scenario classifier: parameter importance and sample means

Importance CS SWA OA NS

E[I]/K 38.44 0.74 0.65 0.39 1.07
cvI 28.61 0.64 0.83 0.72 0.59
τ 14.53 51.63 66.85 50.77 38.62
Q̄high/Q̄ 13.83 0.23 0.22 0.20 0.23

Table 11: Welfare index regression: parameter importance

Importance

E[I]/K 74.00
cvI 22.28
Q̄high/Q̄ 3.16
τ 0.47
P̄ 0.10
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Table 12: Mean low reliability payoff 1
T ∑T

t=1 ∑i∈U low uit ($M)

Mean Min Q1 Q3 Max

CS 76.30 13.88 44.58 106.09 162.84
SWA 75.85 13.88 44.32 105.78 162.53
OA 73.47 13.80 43.55 102.71 156.16
NS 76.80 13.73 45.51 107.84 163.58

Table 13: Low reliability payoff index

Mean Min Q1 Q3 Max

CS 1.000 1.000 1.000 1.000 1.000
SWA 0.994 0.980 0.992 0.998 1.002
OA 0.967 0.907 0.953 0.982 1.002
NS 1.005 0.952 0.993 1.014 1.081

Table 14: Mean high reliability payoff 1
T ∑T

t=1 ∑i∈U high uit ($M)

Mean Min Q1 Q3 Max

CS 105.60 15.52 60.25 143.37 254.08
SWA 105.91 15.51 60.54 144.10 255.63
OA 106.26 15.66 60.88 145.66 255.06
NS 102.13 14.74 57.12 138.33 245.58

Table 15: High reliability payoff index

Mean Min Q1 Q3 Max

CS 1.000 1.000 1.000 1.000 1.000
SWA 1.003 0.997 1.001 1.004 1.013
OA 1.008 0.981 1.003 1.014 1.035
NS 0.962 0.851 0.944 0.986 1.000
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Table 16: Mean storage 1
T ∑T

t=1 St (GL)

Mean Min Q1 Q3 Max

CS 635.78 276.09 532.95 744.67 857.13
SWA 648.07 274.30 547.83 760.72 874.25
OA 697.28 318.34 594.96 823.08 908.92
NS 546.44 229.80 391.17 674.30 830.27
Planner 631.27 325.34 538.49 723.27 830.71

Table 17: Storage index

Mean Min Q1 Q3 Max

CS 1.000 1.000 1.000 1.000 1.000
SWA 1.018 0.974 1.009 1.028 1.064
OA 1.096 0.980 1.077 1.115 1.197
NS 0.843 0.565 0.765 0.922 0.991

Table 18: Mean spills 1
T ∑T

t=1 Zt (GL)

Mean Min Q1 Q3 Max

CS 114.22 0.20 27.49 195.81 302.45
SWA 123.91 0.19 30.21 212.45 315.96
OA 166.53 0.47 31.47 269.29 423.37
NS 87.40 0.01 9.56 154.58 243.69
Planner 107.84 0.42 28.37 184.11 293.43

Table 19: Spills index

Mean Min Q1 Q3 Max

CS 1.000 1.000 1.000 1.000 1.000
SWA 1.106 0.917 1.041 1.155 1.515
OA 1.498 0.975 1.307 1.634 2.395
NS 0.592 0.009 0.332 0.802 0.981
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9 Conclusions

9.1 Research questions

After reviewing the results we can address our initial questions:

Which system of storage rights maximises social welfare?

The simple answer is capacity sharing (i.e., storage capacity rights with loss
deductions). The more complex answer is: it depends. CS is the most frequently
preferred scenario, but each scenario is preferred in at least some cases. On social
welfare grounds the difference between storage capacity rights and spill forfeit
rules is trivial. However, in many cases open access and no storage rights generate
significant welfare losses by inducing storage behaviour that is far from optimal.

The social welfare effects depend to a large extent on the ratio of inflow to storage
capacity. In river systems with low inflow to storage capacity, the welfare costs of
open access (no storage rights) are lower (higher).

What are the distributional effects?

Storage right systems can have significant effects on the distribution of welfare
between low and high reliability user classes. Open access favours high reliability
users and no storage rights favours low reliability users. Spill forfeit rules favour
high reliability users in comparison with storage capacity rights.

What are the effects on storage levels?

While social welfare effects between scenarios are sometimes trivial, storage effects
are often large. Open access results in substantial over storage, while no storage
rights results in substantial under storage. Spill forfeit rules result in non-trivial
increases in mean storage levels relative to storage capacity rights.

These changes in storage levels lead to amplified changes in spills, which may
have implications for downstream users or for in-stream values, particularly flood
mitigation or environmental flows. Since central storage release rules are typically
on the aggressive side (Brennan 2008, Hughes and Goesch 2009b), transitioning
from no storage rights to a system of storage rights (whether it be CS, SWA or OA)
is likely to lead to an increase in mean storage levels and spills.
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9.2 Policy implications

In many cases the welfare differences between scenarios are trivial and will likely
be outweighed by transition costs. In other cases, a transition from no storage
access to some form of storage right may offer a significant gain. However, much of
this gain can go unrealised, if storage rights approximate an open access outcome.

Two analogies can be drawn between our findings and some well known natural
resource results. Firstly, the ‘Gisser-Sanchez Effect’: that the welfare gains gains
from optimal groundwater extraction are often (but not always) trivial (Koundouri
2004). Secondly, the idea of limited-user ’open access’ fisheries (Wilen 1979): where
governments establish quota systems but set non-binding catch limits — incurring
the costs of regulation without the benefits.

The preferred approach to storage rights will depend greatly on the river system.
Given our results, it is understandable that capacity sharing has been implemented
in Northern MDB (where inflows are high relative to storage) and spill forfeit
rules in the south (where spills are less frequent). While existing approaches may
be adapted to local conditions, recent developments — particularly predictions
of lower and more variable inflows under climate change – provide grounds for
some reconsideration.

The central conclusion from this study is that, where well implemented, spill forfeit
rules or storage capacity rights, can produce a close to optimal outcome. That is,
the externalities they generate — while relevant for the distribution of welfare
and for storage levels — have trivial effect on social welfare. This conclusion may
change however, in the case where storage spills have welfare effects.
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